Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Pharm Bull (Tokyo) ; 70(10): 679-683, 2022.
Article in English | MEDLINE | ID: covidwho-2054201

ABSTRACT

The liver X receptor is a nuclear hormone receptor that regulates lipid metabolism. Previously, we had demonstrated the antiviral properties of a liver X receptor antagonist associated with the hepatitis C virus and severe acute respiratory syndrome coronavirus 2. In this study, we screened a chemical library and identified two potential liver X receptor antagonists. Spectroscopic analysis revealed that the structures of both antagonists (compounds 1 and 2) were cyclic dimer and trimer of esters, respectively, that consisted of phthalate and 1,6-hexane diol. This study is the first to report the structure of the cyclic trimer of phthalate ester. Further experiments revealed that the compounds were impurities of solvents used for purification, although their source could not be traced. Both phthalate esters exhibited anti-hepatitis C virus activity, whereas the cyclic dimer showed anti-severe acute respiratory syndrome coronavirus 2 activity. Cyclic phthalate derivatives may constitute a novel class of liver X receptor antagonists and broad-spectrum antivirals.


Subject(s)
COVID-19 , Esters , Antiviral Agents/pharmacology , Esters/pharmacology , Hepacivirus , Hexanes , Humans , Liver X Receptors , Phthalic Acids , Receptors, Cytoplasmic and Nuclear , SARS-CoV-2 , Solvents
2.
J Nat Prod ; 85(1): 284-291, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1596477

ABSTRACT

We have previously reported that neoechinulin B (1a), a prenylated indole diketopiperazine alkaloid, shows antiviral activities against hepatitis C virus (HCV) via the inactivation of the liver X receptors (LXRs) and the resultant disruption of double-membrane vesicles. In this study, a two-step synthesis of the diketopiperazine scaffold of 1a was achieved by the base-induced coupling of 1,4-diacetyl-3-{[(tert-butyldimethylsilyl)oxy]methyl}piperazine-2,5-dione with aldehydes, followed by the treatment of the resultant coupling products with tetra-n-butylammonium fluoride. Compound 1a and its 16 derivatives 1b-q were prepared using this method. Furthermore, variecolorin H, a related alkaloid, was obtained by the acid treatment of 1a in MeOH. The antiviral evaluation of 1a and its derivatives revealed that 1a, 1c, 1d, 1h, 1j, 1l, and 1o exhibited both anti-HCV and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities. The results of this study indicate that the exomethylene moiety on the diketopiperazine ring is important for the antiviral activities. The antiviral compounds can inhibit the production of HCV and SARS-CoV-2 by inactivating LXRs.


Subject(s)
Alkaloids/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Piperazines/pharmacology , SARS-CoV-2/drug effects , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line, Tumor , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Humans , Liver X Receptors/antagonists & inhibitors , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Structure-Activity Relationship , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL